BABTECH 2019 Conference

Biomechanical Analysis on Human Gait and Posture for Development of Floating Backpack System
Narendra Kurnia Putra, Harmein Khagi, Andar Bagus Sriwarno, Suprijanto

1 Medical Instrumentation Laboratory, Instrumentation and Control Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung
Gd. T.P. Rachmat (Labtek VI), ITB Ganesa Campus, Jl. Ganesa no 10, Bandung, Indonesia.

2 Ergonomic Laboratory, Human and Industrial Product Design Research Group, Faculty of Art and Design, Institut Teknologi Bandung
CADL Building, ITB Ganesa Campus, Jl. Ganesa no 10, Bandung, Indonesia.


Floating backpack system or also known as suspended-load backpack has been known as a new type of backpack which able to reduce the effect of impact force from the loads carried in the backpack while walking or running. Particularly on the application for military or rescue team, this new backpack design claimed to improve the comfort and reduce the burden on the skeletal muscle as well as the risk of injury. In this research, we try to assess the biomechanics performance of our novel floating backpack design on reducing the impact force on the wearer by firstly analyzing the human gait cycle and posture adjustment. This analysis conducted by motion analysis method which able to track the change of position of certain points while walking and running. We tracked several points on the volunteer-s lower extremity and analyze its kinematics information throughout the walk and running cycle with a different pace and velocity. From this data, we try to get the standard gait model as an mechanical input force for the floating backpack system. Furthermore, with this 3D analysis we can also analyze the posture adjustment as the balancing mechanism of human body to compensate the different forces from the different state of walking-running cycle. A sinusoidal pattern with a frequency of 2-3 Hz are measured on the transition phase of walking and running, while the maximum amplitude was vary on throughout each cycle phase.

Keywords: Floating Backpack, Kinematics, Biomechanics, Motion Analysis

Topic: Biomedical, Robotic and ICT engineering


Web Format | Corresponding Author (Narendra Kurnia Putra)